(Preprint) AAS 12-638 NUMERICAL INTEGRATION OF CONSTRAINED MULTI-BODY DYNAMICAL SYSTEMS USING 5 ORDER EXACT ANALYTIC CONTINUATION ALGORITHM
نویسندگان
چکیده
Many numerical integration methods have been developed for predicting the evolution of the response of dynamical systems. Standard algorithms approach approximate the solution at a future time by introducing using a truncated power series representation that attempts to recover an n-th order Taylor series approximation, while only numerically sampling a single derivative model. An exact fifthorder analytic continuation method is presented for integrating constrained multibody vector-valued systems of equations, where the Jacobi form of the Routh-Voss equations of motion simultaneously generates the acceleration and Lagrange multiplier solution. The constraint drift problem is addressed by introducing an analytic continuation method that rigorously enforces the kinematic constraints through five time derivatives. The proposed approach is expected to be particularly useful for stiff dynamical systems, as well as systems where implicit integration formulations are introduced. Numerical examples are presented that demonstrate the effectiveness of the proposed methodology.
منابع مشابه
The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملPROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS
We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...
متن کاملMulti-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm
One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...
متن کاملAas 15-663 Analytic Power Series Solutions for Two-body and J2–j6 Trajectories and State Transition Models
Recent work has shown that two-body motion can be analytically modeled using analytic continuation models, which utilize kinematic transformation scalar variables that can be differentiated to an arbitrary order using the well-known Leibniz product rule. This method allows for large integration step sizes while still maintaining high accuracy. With these arbitrary order time derivatives availab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012